Presentación del arte de la pintura mural de Almada Negreiros en las Estaciones Marítimas de Alcântara (Lisboa): investigación diagnóstica de capas de pintura como guía para su futura conservación

Palabras clave: Almada Negreiros, pinturas murales, diagnóstico, SEM-EDS, μ-XRD, µ-FT-IR, Py-GC/MS


Este artículo informa de la investigación de diagnóstico de capas de pintura deterioradas de tres paneles murales realizados por Almada Negreiros en la estación marítima de Alcântara en Lisboa. El objetivo era comprender los principales fenómenos de descomposición para ayudar a futuros trabajos de conservación. La metodología comprendió análisis in situ mediante fotografía técnica en Vis, Vis-RaK y UVF, p-OM y h-EDXRF; micro muestreo; OM, SEM- EDS, μ-XRD, μ-Raman, µ-FT-IR y Py-GC/MS. Los primos resultados muestran que todas las capas de pintura analizadas están afectadas por sales (sulfatos) que a lo largo del tiempo han provocado escamas, falta de cohesión, erosión y lagunas. Las capas de pintura de color verde claro/verde claro azulado en los tres paneles son las más logradas. No se encontraron aglutinantes orgánicos, solo la presencia de polímero de vinilo en superficies de pintura brillante.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Milene Gil, HERCULES Laboratory (University of Évora), Portugal

Milene Gil is a conservator restorer of Mural paintings and a researcher of Conservation Science at HERCULES Laboratory (Evora University). She has completed her PhD in 2010 in Conservation and restoration of Cultural Heritage, field of expertise Theory, History and Techniques of Artistic Production. She is the PI of the project Unveiling the Mural Art of Almada Negreiros PTDC/ART-HIS/1370/2020.

Mafalda Costa, HERCULES Laboratory (University of Évora), Portugal

Mafalda Costa is a geologist and a researcher in the HERCULES Laboratory (University of Évora). Since 2014, she has been working in the field of archaeometry, using analytical techniques to determine the chemical and mineralogical composition of a wide range of inorganic materials recovered from Cultural Heritage contexts.

Mila Cvetkovic, HERCULES Laboratory (University of Évora), Portugal

Mila Cvetković finished architecture studies at the Faculty of Civil Engineering and Architecture in Niš, Serbia. She holds master degrees in architecture (class 2016/17, GAF, University of Niš) and in archaeological materials science (ArchMat, class 2018/20). She is a PhD candidate and a former teaching associate at the Faculty of Civil Engineering and Architecture.

Carlo Bottaini, HERCULES Laboratory (University of Évora), Portugal

Carlo Bottaini is an archaeologist. He completed his PhD at the University of Coimbra (Portugal) in 2013. He is currently researcher at the HERCULES Lab, and he is a member of the CityUMacau Chair in Sustainable Heritage (University of Évora). Much of his research is concerned with exploring the dynamics of societal change in later prehistory of Western Europe and Mediterranean through the analysis of material culture and technologies.

Ana Margarida Cardoso, HERCULES Laboratory (University of Évora), Portugal

Ana Margarida Cardoso has a master’s degree in Materials Engineering. She held an internship at the Institute of Museums and Conservation in the Laboratory José de Figueiredo (LJF) under the Internship Program in Public Administration in 2006. Since then has collaborated on several projects funded by FCT in Portugal, at the LJF and HERCULES Laboratory, with special focus on materials characterization through vibrational spectroscopy and microscopic techniques. She works as a higher technician and she is a PhD student in chemistry at the University of Évora.

Ana Manhita, HERCULES Laboratory (University of Évora), Portugal

Ana Manhita is a Chemist and Assistant Researcher at HERCULES Laboratory, University of Évora, Portugal. She completed her PhD in Chemistry in 2012, focused on the material study of historical textiles. She mainly develops her research in the field of analytical chemistry applied to the study of cultural heritage objects, with special emphasis on the application of advanced chromatographic techniques for the study of organic materials.

Cristina Barrocas Dias, HERCULES Laboratory (University of Évora), Portugal

Cristina Barrocas Dias is an Associate Professor and Deputy-Director of the HERCULES Laboratory, University of Évora. Her research expertise is the analysis of organic compounds by hyphenated chromatographic methods (LC-MS and GC-MS). Recently she has expanded her interests into the analysis of stable isotopes applied to cultural heritage.

António Candeias, Director of the Institute for Research and Advanced Training of the University of Evora, Portugal

Antonio Candeias is a Chemist specialized in surface chemistry and heritage science. Professor at the University of Évora since 1992, he was director of the HERCULES Laboratory from its creation in January 2009 until February 2019. He is currently Vice-Rector for Research and Development and, Director of the Institute for Research and Advanced Training of the University of Evora, Director of the national infrastructure (Portuguese platform of the European Infrastructure in Heritage Sciences) and Chairperson of the CityUMacau Chair in “Sustainable Heritage”.


AZIMI, G.; PAPANGELAKIS, V. G. (2011). Mechanism and kinetics of gypsum–anhydrite transformation in aqueous electrolyte solutions. Hydrometallurgy, 108(1-2), 122–129.

CHAROLA, A. E.; BLÄUER, C. (2015). Salts in Masonry: An Overview of the Problem. Restoration of Buildings and Monuments, pp. 119-135.

COCCATO, A.; BERSANI, D.; COUDRAY, A.; SANYOVA, J.; MOENS, L.; VANDENABEELE, P. (2016). Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. Journal of Raman Spectroscopy, 47, 1429–1443.

CORTEA, I. M. et al. (2020). Uncovering hidden jewels: an investigation of the pictorial layers of an 18th-century Taskin harpsichord. Heritage Science, 8(55).

DRIEL, B. A. V., VAN DEN BERG, K. J., GERRETZEN, J.; DIK, J. (2016). The white of the 20th century: an explorative survey into Dutch modern art collections. Heritage Science, 6(16).

EL-GOHARY, M. (2008). Air Pollution and Aspects of Stone Degradation ‘’Umayyed Liwân - Amman Citadel as a Case Study’’. Journal of Applied Science Research, 4(6), pp. 669-682.

EL-GOHARY, M. (2011). Chemical deterioration of Egyptian limestone affected by saline water. International Journal of Conservation Science, 2(1), pp. 17-28.

EASTAUGH N.; WALSH V.; CHAPLIN T.; SIDDALL R. (2004). The pigment compendium: a dictionary of historical pigments. Elsevier Butterworth-Heinemann.

FIEDLER I.; BAYARD M. (1986). Cadmium yellows, oranges, and reds In Artists´ Pigments: A Handbook of Their History and Characteristics, Volume 1. s.l.: (Editor) Feller, R. L., National Gallery of Art, Washington, Archetype Publications, London, pp.65-109.

FIGUEIREDO, C. et al. (2019). Natural cement in Portuguese heritage buildings. Lisbon: s.n.

FIEDLER I.; BAYARD M. (1997). Emarald green and Scheele’s Green In Artists´ Pigments: A Handbook of Their History and Characteristics, Volume 3. s.l.: (Editor) Fitzhugh E. W., National Gallery of Art, Washington, Archetype Publications, London, pp. 219-273.

FRANÇA, J.A. (2004). História da arte em Portugal. 6. O Modernismo: (século XX), s.l.:Presença.

FRANÇA, J.A. (2014). Glórias de almada. Lisbon: Lisbon: Instituto de História da Arte.

GIL, M. et al. (2007). Yellow and red ochre pigments from southern Portugal: Elemental composition and characterization by WDXRF and XRD. Nuclear Instruments and Methods in Physics Research A, Issue 580, pp. 728-731.

HANAFI, M. H. et al. (2018). An Introduction to Thermal Bridge Assessment and Mold Risk at Dampness Surface for Heritage Building. IOP International Conference on Materials Engineering and Science.

JEDIDI, M.; BENJEDDOU, O. (2018). Effect of Thermal Bridges on the Heat Balance of Buildings. International Journal of Scientific Research in Civil Engineering, 2(5), pp. 41-49.

LÄHTEENMÄKI, L. (2009). Combinations of titanium dioxide and fillers in paints. Degree Program in Chemical Engineering.

LOBO, P. R. (2014). Almada and the Maritime Stations: The portrait of Portugal that the dictatorship wanted to erase. Revista de História da Arte, Volume 2, pp. 342-352.

MADARIAGA, J. M.; MAGUREGUI, M.; DE VALLEJUELO, S. F. O.; KNUUTINEN, U.; CASTRO, K.; MARTINEZ-ARKARAZO, I.; GIAKOUMAKIA, A.; PITARCH, A. (2014). In situ analysis with portable Raman and ED-XRF spectrometers for the diagnosis of the formation of efflorescence on walls and wall paintings of the Insula IX 3 (Pompeii, Italy). Journal of Raman Spectroscopy, 45(11-12), 1059–1067.

MARSZAŁEK, M.; DUDEK, K.; GAWEŁ, A. (2020). Cement Render and Mortar and Their Damages Due to Salt Crystallization in the Holy Trinity Church, Dominicans Monastery in Cracow, Poland. Minerals, Volume 641, p. 10.

MONTEIRO, J. P. (2012). Dissertação para Obtenção do grau Doutor en Design: Para o projecto global - nove décadas de obra: Arte, Design e Técnica na Arquitetura do atelier Pardal Monteiro. s.l.: Lisboa: Universidade Técnica de Lisboa, Faculdade de Arquitetura.

PAVÍA, S. (2008). Sulfation of a decrepit Portland cement mortar and its adjacent masonry. In: SWBSS- Salt Weathering on Buildings and Stone Sculptures. Copenhagen: Technical University of Denmark.

PERIS-VICENTE, J. et al. (2009). Characterization of Commercial Synthetic Resins by Pyrolysis-Gas Chromatography/Mass Spectrometry: Application to Modern Art and Conservation. Analytical Chemistry, Volume 81, pp. 3180-3187.

PLASTER J, A. (1993). Ultramarine Blue natural and artificial In Artists´ Pigments: A Handbook of Their History and Characteristics, Volume 2. s.l.: (Editor) Ashok Roy, National Gallery of Art, Washington, Archetype Publications, London, pp.37-67.

SALVADORI, B.; ERRICO, V.; MAURO, M.; MELNIK, E.; DEI, L. (2003). Evaluation of Gypsum and Calcium Oxalates in Deteriorated Mural Paintings by Quantitative FTIR Spectroscopy, Spectroscopy Letters, 36:5-6, 501-513,

SCHOSSLER, P.; FORTES, I.; CURA D’ARS DE FIGUEIREDO JÚNIOR; ANTÔNIO CRUZ SOUZA, L. (2013). Acrylic and Vinyl Resins Identified by Pyrolysis-Gas Chromatography/Mass Spectrometry: A Study of Cases in Modern Art Conservation. Analytical Letters, 46(12), pp. 1869-1884.

SONG, J.; PENG, P. (2010). Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis, Issue 87, pp. 129-137.

YOUNG, D. (2008). Salt attack and rising damp: A guide to salt damp in historic and older buildings. Heritage Council of NSW, Heritage Vistoria, South Australian Department for Environment and Heritage, Adelaide City Council.

ZEDAN, M. F.; AL-SANEA, S.; AL-MUJAHID, A.; AL-SUHAIBANI, Z. (2016). Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis. Sustainability, 8(560).

Cómo citar
Gil, M., Costa, M., Cvetkovic, M., Bottaini, C., Cardoso, A. M., Manhita, A., Barrocas Dias, C., & Candeias, A. (2021). Presentación del arte de la pintura mural de Almada Negreiros en las Estaciones Marítimas de Alcântara (Lisboa): investigación diagnóstica de capas de pintura como guía para su futura conservación. Ge-Conservacion, 20(1), 105-117.